Telegram Group & Telegram Channel
Зачем использовать stratifed sampling при разбиении на обучающую и тестовую выборки

Stratified sampling (стратифицированная выборка) используется для того, чтобы сохранить пропорции классов (или других важных характеристик) при разбиении данных на обучающую и тестовую части. Это особенно важно, если классы несбалансированы.

Если разбивать случайно, есть риск, что тестовая выборка окажется смещённой — например, в ней будет слишком мало примеров миноритарного класса. Это приведёт к некорректной оценке модели: она может показывать хорошую точность на тесте, но при этом плохо распознавать важные, но редкие случаи.

Stratified sampling помогает избежать этого перекоса, делая тестовую оценку более надёжной и репрезентативной. Особенно важно использовать этот подход при кросс-валидации и в задачах с дисбалансом классов.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/987
Create:
Last Update:

Зачем использовать stratifed sampling при разбиении на обучающую и тестовую выборки

Stratified sampling (стратифицированная выборка) используется для того, чтобы сохранить пропорции классов (или других важных характеристик) при разбиении данных на обучающую и тестовую части. Это особенно важно, если классы несбалансированы.

Если разбивать случайно, есть риск, что тестовая выборка окажется смещённой — например, в ней будет слишком мало примеров миноритарного класса. Это приведёт к некорректной оценке модели: она может показывать хорошую точность на тесте, но при этом плохо распознавать важные, но редкие случаи.

Stratified sampling помогает избежать этого перекоса, делая тестовую оценку более надёжной и репрезентативной. Особенно важно использовать этот подход при кросс-валидации и в задачах с дисбалансом классов.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/987

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Библиотека собеса по Data Science | вопросы с собеседований from nl


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA